INMO 2016 Practice Test

Q1 Let a_1, a_2, \dots, a_{63} be positive real numbers such that $a_1 + a_2 + \cdots + a_{63} = 64$. Then prove that $a_1 + a_2 + \cdots + a_{63} = 04.$ Then
 $\sqrt{32a_1 - 1} + \sqrt{32a_2 - 2} + \cdots +$ √ $32a_{63} - 63 \leq$ √ 2016.

Solution: √

Let $x_i =$ $\overline{32a_i - i}$ for $i = 1, 2, \dots, 63$. Then by RMS-AM inequality, we get: $LHS = x_1 + x_2 + \cdots + x_{63} \leq \sqrt{63 \cdot (x_1^2 + x_2^2 + \cdots + x_{63}^2)}$ $\mathcal{L}_{11,3} = x_1 + x_2 + \cdots + x_{63} \leq \sqrt{03 \cdot (x_1 + x_2 + \cdots + x_{63})}$
= $\sqrt{63 \cdot (32 \cdot [a_1 + a_2 + \cdots + a_{63}] - [1 + 2 + \cdots + 63])} = \sqrt{2016}.$

Q2 Determine all *n* such that $n = (\tau(n))^2$, where $\tau(n)$ denotes the number of positive divisors of *n*.

Solution: $n = 1$ is a trivial solution, so let us assume $n > 1$. Let $n = p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}$ be the prime factorization of n. $\therefore p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t} = n = \tau(n)^2 = (k_1 + 1)^2 (k_2 + 1)^2 \cdots (k_t + 1)^2$ Since *n* is a perfect square, all the k_i 's are even; so $\tau(n)$ is odd. Hence, *n* is also odd; so all p_i 's are ≥ 3 . **Lemma:** $p_i^{k_i} \ge (k_i + 1)^2$ for any $p_i \ge 3, k_i \ge 2$. **Proof:** We use induction on k_i . For $k_i = 2$, $p_i^{k_i} = p_i^2 \ge 3^2 = (k_i + 1)^2$, proving the induction base. For the induction step, we note that $p_i^{k_i+1}$ $\frac{p_i^{k_i+1}}{p_i^{k_i}}=p_i>2\geq\frac{(k_i+2)^2}{(k_i+1)^2}$ $\sqrt{(k_i+1)^2}$ So if $p_i^{k_i} \ge (k_i + 1)^2$, then $p_i^{k_i+1} \ge (k_i + 2)^2$; as required. In addition, note that the induction base is a strict inequality for any $p_i > 3$; while the induction step is always strict inequality. Thus, the lemma is an equality only for $p_i = 3, k_i = 2$. Applying the lemma for each $i = 1, 2, \dots, t$, and combining, we get $p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t} \ge (k_1+1)^2 (k_2+1)^2 \cdots (k_t+1)^2$ with equality only if the prime factorization contains just one term: $p_1 = 3, k_1 = 2$, implying $n = 9$. Thus, the solution set is $\{1,9\}$.

Q3 In $\triangle ABC$, H is the orthocenter, and K is the foot of the perpendicular from H on the internal bisector of $\angle A$. Prove that K is collinear with the midpoints of AH and BC.

Solution:

Let X, D be the midpoints of segments AH, BC respectively, and O be the circumcenter of $\triangle ABC$.

Since \triangle APK is isosceles; we get $\angle XKA = \angle XAK$. Also, H and O are isogonal conjugates; hence $\angle XAK = \angle KAO$. ∴ ∠XKA = ∠KAO, implying XK||AO. However, $AODX$ is a parallelogram, therefore $AO||XD$. Hence $XK||XD$, implying $X - K - D$; QED.

Q4 Let S be a set of n distinct points in a plane; and T be a set of $n+1$ distinct triangles, all of whose vertices belong to S. Prove that there exist 2 triangles in T that have exactly 1 vertex in common.

Solution:

We will use strong induction to prove a stronger statement:

Claim: Let S be a set of n distinct points in a plane; and T be a set of at least $n+1$ triangles, all of whose vertices belong to S. Then either the elements of T are not all distinct, or there exist 2 triangles in T such that they have exactly 1 vertex in common.

Proof: For the induction base, note that for $n = 1, 2, 3, 4$, we have $\binom{n}{2}$ $\binom{n}{3}$ < n + 1; so there cannot be n + 1 distinct triangles in T.

For the induction step, let the claim be true for all numbers up to $n-1$; we wish to prove it for n.

If possible, let there be a set T containing at least $n + 1$ distinct triangles, none of which share exactly 1 vertex. In other words, if two triangles in T share a vertex, then they share exactly 2 vertices. Together, these triangles use at least $3n+3$ vertices from the set S containing only n vertices. So by pigeonhole principle, there exists a vertex $A \in S$ which belongs to at least 4 different triangles.

Let us call vertices X, Y 'adjacent' if there is a triangle in T that has both of them as vertices. Let $\{B_1, B_2, \cdots, B_k\}$ be the set of all vertices adjacent to A. We note that $k \geq 4$, else we wouldn't be able to form 4 distinct triangles containing A.

WLOG let AB_1B_2 be one of the triangles containing A. Consider a second triangle containing A; one of its vertices must be B_1 or B_2 , WLOG let it be B_1 ; and let the third vertex be called B_3 .

So we have triangles AB_1B_2 and AB_1B_3 . There are at least 2 more triangles containing A. At most one of them could be AB_2B_3 ; but

2

that still leaves at least yet another triangle with a vertex, say B_4 . Since this triangle has to share exactly 2 vertices with AB_1B_2 and AB_1B_3 , this triangle must have B_1 as one of its vertices.

So now, we have triangles AB_1B_2 , AB_1B_3 and AB_1B_4 . (Note that this now eliminates the possibility of AB_2B_3 being a triangle in T, else it would share exactly 1 vertex with AB_1B_4 .

Similarly, for $i = 2, 3, \dots, k$, B_i can be a vertex of only AB_1B_i . As a result, the $(k+1)$ vertices in the set $V = \{A, B_1, B_2, \dots, B_k\}$ are used in exactly the $(k-1)$ triangles $\{AB_1B_2, AB_1B_3, \cdots, AB_1B_k\},\$ and none of them are adjacent to any of the $n - (k + 1)$ vertices in $S\backslash V$, which form at least $(n+1) - (k-1) = n - k + 2$ triangles. By the induction hypothesis, $S\Y$ satisfies the claim; therefore, so

does the set S. Thus our proof is complete.

Q5 In the parallelogram $ABCD$, points E and F are on sides AB and CD respectively. AF intersects ED in $G. EC$ intersects FB in H . GH produced intersects AD in L and BC in M . Prove that $DL = BM$.

Solution: Firstly, we note that it suffices to prove that GH passes through the point of intersection of the diagonals of ABCD. So we need to prove that GH is collinear with the midpoint O of AC. Let $DE \cap FB = P, EC \cap AF = Q$. Let $AE = x, EB = y, BF = z, FD = w$. Then $x + y = z + w$. Applying Menelaus' theorem in ΔEPA for transversal $F - H - B$, we get $\frac{EH}{HP} \cdot \frac{PF}{FA} \cdot \frac{AB}{BE} = -1$ But $\frac{PF}{FA} = \frac{PC}{CE}$ $\frac{E H}{H P} \cdot \frac{P C}{C E} \cdot \frac{A B}{B E} = -1$ $\therefore \frac{PC}{HP} = -\frac{CE}{EH} \cdot \frac{EB}{BA} = -\frac{y+z}{y}$ $\frac{+z}{y} \cdot \frac{y}{x+}$ ∴ HP = EH BA = y x+y
∴ $\frac{PC}{HP}$ = $-\frac{y+z}{x+y}$ $x+y$ By symmetry, we can do similar calculations for ΔFQB with transversal $E - H - C$, to get $rac{QB}{HQ}=-\frac{z+y}{w+z}$ μ_Q – $w+z$
 $\therefore \frac{PC}{HP} = \frac{QB}{HQ}$, implying $PQ||BC||AD$. So by B.P.T. we get $\frac{CH}{HP} = -\frac{BC}{PQ} = -\frac{AD}{PQ} = -\frac{AG}{GP}$ $G\hspace{0.5pt}F$ $\therefore \frac{AO}{OC} \cdot \frac{CH}{HP} \cdot \frac{PG}{GA} = -1$ since $AO = OC$.

So by converse of Menelaus' Theorem, we get $G-O-H$ as required.

Q6 Find all polynomials $f(x)$ with real coefficients, such that for all $x \in \mathbb{R}, f(x^2) + f(x)f(x+1) = 0.$

Solution:

Let $g(x) = f(x+1)$ and $h(x) = f(x^2)$. Then $h(x) = -f(x)g(x)$. Let the degree of f be n. So f has n roots in \mathbb{C} , possibly repeated. Let $\alpha_1, \alpha_2, \cdots, \alpha_n$ be the complex roots of f. Then $\alpha_1 - 1, \alpha_2 - 1, \cdots, \alpha_n - 1$ are the roots of g. Hence, the roots of h are $\alpha_1, \alpha_2, \cdots, \alpha_n, \alpha_1 - 1, \alpha_2 - 1, \cdots, \alpha_n - 1$. Now, note that $f(\alpha_i) = 0 \Rightarrow f(\alpha_i^2) = h(\alpha_i) = -f(\alpha_i)g(\alpha_i) = 0.$ So if α_i is a root of f, so is α_i^2 . If $0 < |\alpha_i| < 1$ or $1 < |\alpha_i|$, then $\alpha_i, \alpha_i^2, \alpha_i^4, \cdots$ is an infinite nonrepeating sequence of roots, implying f is the zero polynomial. To find other solutions, let $S = \{z : z \in \mathbb{C}; |z| \in \{0,1\}\}\)$, and let $\alpha_i \in S$ for $i = 1, 2, \dots, n$. We note that since $\beta = \alpha_i - 1$ is a root of h, then $0 = h(\beta) = f(\beta^2)$, implying β^2 is one of the α_i 's. So $\beta^2 \in S \Rightarrow |\beta^2| \in \{0, 1\} \Rightarrow |\beta| \in \{0, 1\} \Rightarrow \beta \in S$. Hence, $\alpha_i - 1 \in S$ for $i = 1, 2, \dots, n$. Thus all roots α_i of f belong to the set: $T = S \cap \{z + 1 : z \in S\} = \{0, 1, cis(\frac{\pi}{3})\}$ $\frac{\pi}{3}$), $-cis\left(\frac{\pi}{3}\right)$ $\frac{\pi}{3}$ }. However, if $\alpha_i = \pm cis(\frac{\pi}{3})$ $(\frac{\pi}{3})$, then $\alpha_i^2 = \pm cis(\frac{2\pi}{3})$ $(\frac{2\pi}{3}) \notin T$, contradicting the previously shown fact that α_i^2 is also a root of f. So the only possible roots of f are 0 and 1. Also, comparing the leading coefficients in the equation $f(x^2)$ + $f(x)f(x+1) = 0$, we see that the same has to be -1. $\therefore f(x) = -x^k(x-1)^l$ for some non-negative integers k, l. ∴ $g(x) = -(x+1)^k x^l$ ∴ $h(x) = -(x+1)^k x^{k+l} (x-1)^l$ $= f(x^2) = -x^{2k}(x^2 - 1)^l = -(x+1)^l x^{2k}(x-1)^l.$ Comparing the exponents, we see that $k = l$ is forced. Thus the possible solutions are: $f(x) \equiv 0$; and $f(x) = -x^{k}(x-1)^{k}$ for any non-negative integer k.

4