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INMO 2016 Practice Test

Q1 Let a1, a2, · · · , a63 be positive real numbers such that
a1 + a2 + · · ·+ a63 = 64. Then prove that√

32a1 − 1 +
√

32a2 − 2 + · · ·+
√

32a63 − 63 ≤
√

2016.

Solution:
Let xi =

√
32ai − i for i = 1, 2, · · · , 63.

Then by RMS-AM inequality, we get:
LHS = x1 + x2 + · · ·+ x63 ≤

√
63 · (x21 + x22 + · · ·+ x263)

=
√

63 · (32 · [a1 + a2 + · · ·+ a63]− [1 + 2 + · · ·+ 63]) =
√

2016.

Q2 Determine all n such that n = (τ(n))2, where τ(n) denotes the
number of positive divisors of n.

Solution: n = 1 is a trivial solution, so let us assume n > 1.
Let n = pk11 p

k2
2 · · · pktt be the prime factorization of n.

∴ pk11 p
k2
2 · · · pktt = n = τ(n)2 = (k1 + 1)2(k2 + 1)2 · · · (kt + 1)2

Since n is a perfect square, all the ki’s are even; so τ(n) is odd.
Hence, n is also odd; so all pi’s are ≥ 3.
Lemma: pkii ≥ (ki + 1)2 for any pi ≥ 3, ki ≥ 2.
Proof: We use induction on ki.
For ki = 2, pkii = p2i ≥ 32 = (ki + 1)2, proving the induction base.
For the induction step, we note that
p
ki+1
i

p
ki
i

= pi > 2 ≥ (ki+2)2

(ki+1)2

So if pkii ≥ (ki + 1)2, then pki+1
i ≥ (ki + 2)2; as required.

In addition, note that the induction base is a strict inequality for
any pi > 3; while the induction step is always strict inequality.
Thus, the lemma is an equality only for pi = 3, ki = 2.

Applying the lemma for each i = 1, 2, · · · , t, and combining, we get
pk11 p

k2
2 · · · pktt ≥ (k1 + 1)2(k2 + 1)2 · · · (kt + 1)2

with equality only if the prime factorization contains just one term:
p1 = 3, k1 = 2, implying n = 9.
Thus, the solution set is {1, 9}.
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Q3 In 4ABC, H is the orthocenter, and K is the foot of the per-
pendicular from H on the internal bisector of ∠A. Prove that K is
collinear with the midpoints of AH and BC.

Solution:
Let X,D be the midpoints of segments AH,BC respectively, and
O be the circumcenter of ∆ABC.
Since ∆APK is isosceles; we get ∠XKA = ∠XAK.
Also, H and O are isogonal conjugates; hence ∠XAK = ∠KAO.
∴ ∠XKA = ∠KAO, implying XK||AO.
However, AODX is a parallelogram, therefore AO||XD.
Hence XK||XD, implying X −K −D; QED.

Q4 Let S be a set of n distinct points in a plane; and T be a set of
n+1 distinct triangles, all of whose vertices belong to S. Prove that
there exist 2 triangles in T that have exactly 1 vertex in common.

Solution:
We will use strong induction to prove a stronger statement:
Claim: Let S be a set of n distinct points in a plane; and T be
a set of at least n + 1 triangles, all of whose vertices belong to S.
Then either the elements of T are not all distinct, or there exist 2
triangles in T such that they have exactly 1 vertex in common.

Proof: For the induction base, note that for n = 1, 2, 3, 4, we have(
n
3

)
< n+ 1; so there cannot be n+ 1 distinct triangles in T .

For the induction step, let the claim be true for all numbers up to
n− 1; we wish to prove it for n.
If possible, let there be a set T containing at least n + 1 distinct
triangles, none of which share exactly 1 vertex. In other words, if
two triangles in T share a vertex, then they share exactly 2 vertices.
Together, these triangles use at least 3n+ 3 vertices from the set S
containing only n vertices. So by pigeonhole principle, there exists
a vertex A ∈ S which belongs to at least 4 different triangles.
Let us call vertices X, Y ‘adjacent’ if there is a triangle in T that
has both of them as vertices. Let {B1, B2, · · · , Bk} be the set of all
vertices adjacent to A. We note that k ≥ 4, else we wouldn’t be
able to form 4 distinct triangles containing A.
WLOG let AB1B2 be one of the triangles containing A. Consider a
second triangle containing A; one of its vertices must be B1 or B2,
WLOG let it be B1; and let the third vertex be called B3.
So we have triangles AB1B2 and AB1B3. There are at least 2 more
triangles containing A. At most one of them could be AB2B3; but
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that still leaves at least yet another triangle with a vertex, say B4.
Since this triangle has to share exactly 2 vertices with AB1B2 and
AB1B3, this triangle must have B1 as one of its vertices.
So now, we have triangles AB1B2, AB1B3 and AB1B4. (Note that
this now eliminates the possibility of AB2B3 being a triangle in T ,
else it would share exactly 1 vertex with AB1B4.)
Similarly, for i = 2, 3, · · · , k, Bi can be a vertex of only AB1Bi. As
a result, the (k+ 1) vertices in the set V = {A,B1, B2, · · · , Bk} are
used in exactly the (k− 1) triangles {AB1B2, AB1B3, · · · , AB1Bk},
and none of them are adjacent to any of the n− (k+ 1) vertices in
S\V , which form at least (n+ 1)− (k − 1) = n− k + 2 triangles.
By the induction hypothesis, S\V satisfies the claim; therefore, so
does the set S. Thus our proof is complete.

Q5 In the parallelogram ABCD, points E and F are on sides AB
and CD respectively. AF intersects ED in G. EC intersects FB
in H. GH produced intersects AD in L and BC in M. Prove that
DL = BM.

Solution: Firstly, we note that it suffices to prove that GH passes
through the point of intersection of the diagonals of ABCD. So we
need to prove that GH is collinear with the midpoint O of AC.
Let DE ∩ FB = P,EC ∩ AF = Q.
Let AE = x,EB = y,BF = z, FD = w. Then x+ y = z + w.
Applying Menelaus’ theorem in ∆EPA for transversal F −H −B,
we get EH

HP
· PF
FA
· AB
BE

= −1

But PF
FA

= PC
CE

∴ EH
HP
· PC
CE
· AB
BE

= −1

∴ PC
HP

= −CE
EH
· EB
BA

= −y+z
y
· y
x+y

∴ PC
HP

= − y+z
x+y

By symmetry, we can do similar calculations for ∆FQB with transver-
sal E −H − C, to get
QB
HQ

= − z+y
w+z

∴ PC
HP

= QB
HQ

, implying PQ||BC||AD.

So by B.P.T. we get CH
HP

= −BC
PQ

= −AD
PQ

= −AG
GP

∴ AO
OC
· CH
HP
· PG
GA

= −1
since AO = OC.
So by converse of Menelaus’ Theorem, we get G−O−H as required.
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Q6 Find all polynomials f(x) with real coefficients, such that for
all x ∈ R, f(x2) + f(x)f(x+ 1) = 0.

Solution:
Let g(x) = f(x+ 1) and h(x) = f(x2). Then h(x) = −f(x)g(x).
Let the degree of f be n. So f has n roots in C, possibly repeated.
Let α1, α2, · · · , αn be the complex roots of f .
Then α1 − 1, α2 − 1, · · · , αn − 1 are the roots of g.
Hence, the roots of h are α1, α2, · · · , αn, α1 − 1, α2 − 1, · · · , αn − 1.
Now, note that f(αi) = 0⇒ f(α2

i ) = h(αi) = −f(αi)g(αi) = 0.
So if αi is a root of f , so is α2

i .
If 0 < |αi| < 1 or 1 < |αi|, then αi, α

2
i , α

4
i , · · ·is an infinite non-

repeating sequence of roots, implying f is the zero polynomial.
To find other solutions, let S = {z : z ∈ C; |z| ∈ {0, 1}}, and
let αi ∈ S for i = 1, 2, · · · , n.
We note that since β = αi−1 is a root of h, then 0 = h(β) = f(β2),
implying β2 is one of the αi’s.
So β2 ∈ S ⇒ |β2| ∈ {0, 1} ⇒ |β| ∈ {0, 1} ⇒ β ∈ S.
Hence, αi − 1 ∈ S for i = 1, 2, · · · , n.
Thus all roots αi of f belong to the set:
T = S ∩ {z + 1 : z ∈ S} = {0, 1, cis(π

3
),−cis(π

3
)}.

However, if αi = ±cis(π
3
), then α2

i = ±cis(2π
3

) /∈ T , contradicting
the previously shown fact that α2

i is also a root of f .
So the only possible roots of f are 0 and 1.
Also, comparing the leading coefficients in the equation f(x2) +
f(x)f(x+ 1) = 0, we see that the same has to be -1.
∴ f(x) = −xk(x− 1)l for some non-negative integers k, l.
∴ g(x) = −(x+ 1)kxl

∴ h(x) = −(x+ 1)kxk+l(x− 1)l

= f(x2) = −x2k(x2 − 1)l = −(x+ 1)lx2k(x− 1)l.
Comparing the exponents, we see that k = l is forced.
Thus the possible solutions are:
f(x) ≡ 0; and
f(x) = −xk(x− 1)k for any non-negative integer k.


