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INMO 2016 Practice Test II

Q1 Let S = {1, 2, · · · , n}. A subset G of S is called a good set if
and only if |G| ∈ G. A subset E of S is said to be an excellent set
if and only if E is good and has no proper good subset. Find the
number of excellent subsets of S.

Solution: For k = 1, 2, · · · , n, let us count the number of excellent
subsets of size k. If E is such a set, then E is good; so k ∈ E.
Now, for any natural number l < k, if l ∈ E, then we can consider
a proper subset of E that contains exactly l elements, including l.
Such a subset would be good; which contradicts E being excellent.
Hence, all the elements of E belong to {k, k + 1, · · · , n}. We also
see that this criterion is sufficient for E to be an excellent set.
So, the number of k−element excellent sets is given by

(
n−k
k−1

)
; since

we have to choose the remaining k− 1 elements other than k itself.
Combining the from k = 1, 2, · · · , n, we see that the total number
of excellent subsets for S is given by:
En =

(
n−1
0

)
+
(
n−2
1

)
+ · · ·+

(
n−k
k−1

)
+ · · ·+

Note that the terms of the above series will be zero, for k > n
2
.

We observe that En + En+1 = En+2, since by Pascal’s identity:(
n−k
k−1

)
+
(
(n+1)−(k+1)

(k+1)−1

)
=
(
n−k
k−1

)
+
(
n−k
k

)
=
(
n+1−k

k

)
Further, E1 = 1;E2 = 1. Hence we see that En is essentially the
Fibonacci sequence: En = Fn−1.

Q2 Let C be a point on a semicircle of diameter AB and let D be
the mid point of arc AC. Denote by E the projection of the point
D on the line BC. Let F be the intersection of the line AE with
the semicircle. Prove that line BF bisects the line segment DE.

Solution: Let BF intersect DE at point X.
Since DE ⊥ BC and AC ⊥ BC, we have DE||AC.
∴ ∠EDC = ∠DCA = ∠DAC; so by the converse of tangent-secant
theorem, ED is a tangent to the given circle at D.
∴ XD2 = XF ·XB.
Consider the circle with diameter BE; it passes through F .
Also, ∠DEA = ∠EAC = ∠FAC = ∠FBC = ∠FBE; so by the
converse of tangent-secant theorem, DE is a tangent to this circle
at point E.
∴ XE2 = XF ·XB.
Hence XD = XE; implying X is the midpoint of DE as required.
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Q3 For any m,n ∈ N, let (m,n) denote their GCD.
For any n ∈ N let us define ψ(n) =

∑n
i=1 (n, i). Then prove that

ψ(mn) = ψ(m) · ψ(n) for all m,n ∈ N such that (m,n) = 1.

Solution: We use the following lemma:
Lemma: If (m,n) = 1, then ∀i ∈ N : (mn, i) = (m, i) · (n, i).
Proof: Let p be any prime; and α, β, γ be the exponents of p in
the prime factorizations of m,n and i respectively.
Hence, the exponent of p in the factorization of (mn, i) will be
min(α + β, γ). Similarly, the exponents for (m, i), (n, i) will be
min(α, γ),min(β, γ) respectively.
Since (m,n) = 1, one of α, β must be zero; WLOG let β = 0.
∴ min(α + β, γ) = min(α, γ) = min(α, γ) + min(β, γ)
since min(β, γ) = 0. Thus the prime factorizations of (mn, i) and
(m, i) · (n, i) are identical; implying they are equal; QED.

Now, returning to the given problem:
ψ(mn) =

∑mn
i=1 (mn, i) =

∑mn−1
i=0 (m, i) · (n, i)

(Note that we have shifted the range of the summation index, but
since (mn, 0) = (mn,mn); the value of the sum is unchanged.)
Since (m, qm + r) = (m, r), we can regroup the terms of the sum-
mation, based on their remainders modulo m, to get:
ψ(mn) =

∑mn−1
i=0 (m, i) · (n, i)

=
∑m−1

r=0

∑n−1
q=0 (m, qm+ r) · (n, qm+ r)

=
∑m−1

r=0

[
(m, r)

∑n−1
q=0 (n, qm+ r)

]
The set of values (qm+r) for q = 0, 1, · · · , (n−1) forms a complete
set of residues modulo n, since (m,n) = 1.
∴
∑n−1

q=0 (n, qm+ r) =
∑n−1

t=0 (n, t) = ψ(n).

∴ ψ(mn) =
∑m−1

r=0 [(m, r)ψ(n)] = ψ(n)
∑m−1

r=0 (m, r) = ψ(n) · ψ(m),
as required.
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Q4 Find all functions f : Z→ R such that
f(m+ n) + f(m− n) = 1

2
(f(2m) + f(2n)) for all m,n ∈ Z

Solution: Putting m = n = 0, we get f(0) = 0.
Now, putting n = 0 we get 2f(m) = 1

2
f(2m).

Thus the given equation can be rewritten as:
f(m+ n) + f(m− n) = 2(f(m) + f(n)) for all m,n ∈ Z
Let f(1) = k. Then putting n = 1, we get:
f(m+ 1) + f(m− 1) = 2[f(m) + k].
We notice that this is a recurrence relation for f ; with the initial
conditions f(0) = 0, f(1) = k.
Also, we notice that f(m) = km2 satisfies the same, so it must be
the only solution to the above equation and initial conditions.
(Alternately, the same can be established by induction as well.)
Therefore the only solution is: f(m) = km2 for some k ∈ R.

Q5 Let x, y, z ∈ R, x, y, z ≥ 0, xyz = 1. Then show that
x3

(1+y)(1+z)
+ y3

(1+x)(1+z)
+ z3

(1+x)(1+y)
≥ 3

4
.

Solution: Cross-multiplying to clear the denominators, and using
xyz = 1, we get the equivalent statement:
4
∑
x3(1 + x) ≥ 3(1 + x)(1 + y)(1 + z) = 3(2 +

∑
x+

∑
xy)

⇔ 4
∑
x4 + 4

∑
x3 ≥ 3

∑
x+ 3

∑
xy + 6.

We wish to decompose the above into several smaller inequalities.
For that, we regroup the terms, and multiply by a suitable power
of (xyz) wherever necessary, to get the equivalent:
(3
∑
x4) + (

∑
x4) + (2

∑
x3) + (2

∑
x3)

≥ (3
∑
x2yz) + (

∑
x

5
3y

5
3 z

2
3 ) + (2

∑
x

4
3y

4
3 z

1
3 ) + (6xyz)

The first three corresponding brackets on the LHS and RHS are
related by a direct application of the rearrangement inequality, and
the last bracket, by A.M.-G.M. inequality. Hence proved.
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Q6 Let D be an arbitrary point of segment AB of given 4ABC.
Let E be the interior point where CD intersects external common
tangent (other than AB) to the incircles of triangles ADC and
BDC. Find the locus of E as D moves on segment AB.

Solution: Let Γ1,Γ2 be the incircles of ∆ADC, ∆BDC respec-
tively. Let K,L be the points of tangency of Γ1 and Γ2 respectively,
on line DC. Let the external common tangent of Γ1,Γ2 other than
AB, meet AB at point X.
Then we see that Γ1,Γ2 are the incircle and an excircle for ∆XDE,
in some order; implying that KL has the same midpoint as DE.
In other words, EK = DL; i.e. DE = DK +KE = DK +DL.
Now, by the known incircle configuration in ∆ADC,∆BDC,
DK = AD+DC−AC

2
, and DL = BD+DC−BC

2
.

∴ DE = DC + AD+BD−AC−BC
2

= DC + AB−AC−BC
2

.
∴ EC = DC −DE = AC+BC−AB

2
, a constant independent of D.

Hence, the locus of E is a circle centered at C, of radius AC+BC−AB
2

.


