MPI RMO Selection test 2021

Each question has an integer answer from 000 to 999. Maximum marks 50; total time 90 minutes.

Questions

Section A: 2 marks per question

1. In a coordinate plane, let $A \equiv (0,0)$; and let points B to Z be arranged in a 5×5 grid formation as show in the diagram. Find the value of $AB^2 + AC^2 + AD^2 + \cdots + AY^2 + AZ^2$.

- 2. A bakery offers three flavors of cake. In how many ways can 5 people buy one cake each; such that no three of them buy exactly the same flavor?
- 3. Let $\triangle ABC$ have side lengths 13, 14 and 15. If I is the incenter, then find out the smallest area among the triangles ΔIBC , ΔICA and ΔIAB .
- 4. Find the smallest non-negative value of k such that the equations $y = x^2 + 2x + 2$ and $y = kx - 2$ have at least one common solution.
- 5. For any $n \in \mathbb{N}$, let $f(n)$ denote the number formed by writing the decimal representations of n and n^2 , in that order from left to right. For eg, $f(1) = 11, f(4) = 416, f(12) = 12144.$ If $K = f(1) + f(2) + f(3) + \cdots + f(19) + f(20)$; then find the sum of the digits of K.

Section B: 3 marks per question

- 6. Given $\triangle ABC$ such that $\angle A = 90^\circ$ and $BC = 12$; let Γ be its circumcircle. Let the tangent to Γ at A meet line BC at point P such that $B - C - P$. Given that the angles of $\triangle ABP$ are in arithmetic progression, find the area of $\triangle ABC$.
- 7. Find the number of ordered pairs of integers (m, n) such that $1 \leq m \leq n \leq 30$ and the numbers $m^2, 2mn, 3n^2$ are in A.P.
- 8. For any natural number k, let $m(k)$ denote the largest digit in the decimal representation of k. For eg, $m(1) = 1, m(24) = 4, m(55) = 5.$ Find the value of $m(1) + m(2) + m(3) + \cdots + m(98) + m(99)$.
- 9. In a group of 10 students, there are 4 pairs of twins. The group wants to pose for a photo, in two distinct rows of 5 people each; such that each twin is adjacent to their sibling in the same row. How many such distinct photos can be taken? (Assume that twins look perfectly identical in a photo!)
- 10. Find the number of ordered pairs of integers (a, b) such that $-3 \le a, b \le 3$, and the equations $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ have at least one common root.

Section C: 5 marks per question

- 11. Let $\triangle ABC$ such that $AB = 7$, $BC = 8$, $CA = 9$. Let Γ_1 be a circle passing through A, and tangent to line BC at point B. Let Γ_2 be a circle passing through A, and tangent to line BC at point C. Let Γ_1, Γ_2 intersect again at P; and let the line AP intersect BC at K. Find the length of AK.
- 12. For any natural number n, let $L(n)$ denote the L.C.M. of n and 27. Find the number of distinct terms in the series $L(1), L(2), L(3), \cdots, L(26), L(27)$, if we count any repeated values only once.
- 13. Let $P(x) = x^2 6x + 10$ and $Q(x) = 2x^2 12x + 10$. Count the number of ordered pairs of integers (a, b) such that $P(a) > b > Q(a)$.
- 14. ABCD is an isosceles trapezium such that $AB||CD, \angle ABC = 45^{\circ}$, $AB = 2CD$ and $BC = AD = 6$. Count the number of points P which lie strictly in the interior of $\Box ABCD$, such that the distance of P from lines BC , AD are both positive integers.
- 15. A cross is a tile of area 5, that looks like a plus sign; i.e. it has one center square, and 4 squares around the center square, one in each direction (left, right, up and down). Given a blank chessboard of size 8×8 , what is the minimum number of squares that need to be coloured, so that no matter where we place a cross, it will cover exactly one coloured square? Note that the cross can only be placed along the grid lines (i.e. it cannot cover any square partially); and it should also completely stay within the board area (i.e. no part can hang outside the board)

Answers and hints

- 1. [550] Use the distance formula; separately add the X and Y components.
- 2. [090] Choose which flavor is not repeated (3 ways), then choose who selects that flavor (5 ways), finally partition the others into 2 distinct groups of 2 each (6 ways).
- 3. [026] By Heron's formula, $\Delta = 84 = rs$; so $r = 6$ which is the common height for all the three given triangles.
- 4. [006] By subtraction we get a quadratic equation whose discriminant $(2-k)^2 16$ should be nonnegative. So $2-k \geq 4$ or $2-k \leq -4$; with the former impossible due to the non-negative condition of k .
- 5. [020] Partitioning 1 to 20 as per the number of digits in n^2 , we get $K = (1^2 + 2^2 + \dots + 20^2) + 10 \times (1 + \dots + 3) + 100 \times (4 + \dots + 9) + 1000 \times (10 + \dots + 20) = 171830.$
- 6. [018] Let ∠ABP = x; then the angles of $\triangle ABP$ are $x, 90 + x, 90 2x$. If these are in A.P, it forces $x = 15^{\circ}$. If O is the midpoint of BC, then $AO = \frac{BC}{2} = 6$, and $\angle AOC = 2x = 30^{\circ}$, so the height from A to BC is 3.
- 7. [040] $m^2 + 3n^2 = 4mn$ implies $(m n)(m 3n) = 0$. So either $m = n$ (30 solutions) or $m = 3n$ (10 solutions).
- 8. [615] For each i in 1 to 9, there are exactly $2i + 1$ numbers n such that $f(n) = i$; namely $i0, i1, \dots, i(i-1), 0i, 1i, \dots, (i-1)i, ii$. So we need to find $\sum_{i=1}^{9} (i(2i+1)) = 2 \sum_{i=1}^{9} i^2 + \sum_{i=1}^{9} i$.
- 9. [432] First partition the 4 twin pairs into the two rows (6 ways); then partition the 2 non-twins into those rows (2 ways); finally permute each row, treating the twin pairs as a single entity (6×6) ways)
- 10. [013] Subtracting, we get $x(a b) = a b$. So either $a = b$ (7 solutions) or $x = 1$ implying $a + b = -1$ (6 solutions).
- 11. [007] By the power of K with respect to $\Gamma_1, \Gamma_2, KB^2 = KA \cdot KP = KC^2$; so AK is a median; and we can use Apollonius' theorem.
- 12. [018] Noting that $L(k) = L(3k)$ for any k in 1 to 27, we can partition 1 to 27 into groups ignoring any powers of 3 in their factorization.
- 13. [030] Note that $P(a) > Q(a)$ forces $0 < a < 6$. For each a in 1 to 5, we add up $P(a) Q(a)$, subtracting 1 in each case, due to the strict bounds.
- 14. $[040]$ Joining BC, AD at point O, we can setup a coordinate system with O as the origin, and BC, AD as the axes, so that A, B, C, D have coordinates $(0, 12), (12, 0), (6, 0), (0, 6)$ respectively. Now we only need to count the lattice points in the interior of $\Box ABCD$.
- 15. [012] The only way to ensure that any cross covers exactly one colored square, is to use a 'knight's tour" layout for colouring, as shown below.

