
Regional Mathematical Olympiad - 2016: Practice paper
Hints and Solutions

Hints/Partial solutions:

1. (16 marks) Find all positive integers m,n such that 2m + 2016 = 2n.
Hint:
Rearranging the terms, we get the equivalent equation: 2016 = 2n − 2m

2. (16 marks) Given ∆ABC, let P and Q be the feet of the perpendiculars drawn from point A onto the
internal bisectors of angles B and C respectively. Prove that PQ is parallel to BC.
Hint:
Let the internal bisectors of angles B and C meet at I, which is the incenter of ∆ABC.

3. (16 marks) Find all real numbers x, y, z that satisfy the following system of equations:
6x− 5y = xy
6y − 5z = yz
6z − 5x = zx
Hint:
First, we consider the case that any one of x, y, z may be zero.

4. (16 marks) There is a round table with 18 identical chairs around it. Find the number of ways in which
5 teachers and 13 students can be seated, so that no 4 students are sitting together. (Note that any two
seating arrangements which are identical by rotation, will be considered identical)
Hint:
In any given valid seating configuration, let us denote the teachers as T1, T2, · · · , T5, in the order in
which they appear clockwise, starting from any one teacher.
Let x1 denote the number of students seated directly to the left of T1 (i.e. in between T1 and T2).
Similarly we define x2, x3, · · · , x5.

5. (16 marks) Given a fixed segment BC and a line l parallel to it, find with proof the position of a point
A on line l, for which the measure of ∠BAC is the maximum.
Hint:
We note that the triangle’s area ∆ = 1

2bc sinA is constant, since its base and height are of a constant
length.

By cosine rule: cosA = b2+c2−a2

2bc

6. (20 marks) Find the number of integers m such that exactly one of the roots of the following quadratic
equation is an integer:

2x2 −mx+ 125 = 0

Hint: Using the standard formula, we get the roots of the equation as α = m+
√

∆
4 ; β = m−

√
∆

4
with the discriminant as ∆ = m2 − 1000, which has to be a perfect square, for any one of the above
roots to be an integer.
Let ∆ = k2, where k is a non-negative integer. Then the above roots are: α = m+k

4 ; β = m−k
4 .



Complete solutions:

1. (16 marks) Find all positive integers m,n such that 2m + 2016 = 2n.
Solution:
Rearranging the terms, we get the equivalent equation: 2016 = 2n − 2m = 2m(2n−m − 1)
Since m < n, i.e. n−m > 0, the term inside the bracket is necessarily odd; so 2m must be equal to the
largest power of 2 that divides 2016. Based on the factorization of 2016, this forces m = 5; which gives
(m,n) = (5, 11) as the only solution.

2. (16 marks) Given ∆ABC, let P and Q be the feet of the perpendiculars drawn from point A onto the
internal bisectors of angles B and C respectively. Prove that PQ is parallel to BC.
Solution:
Let the internal bisectors of angles B and C meet at I, which is the incenter of ∆ABC. Then we observe
that AIPQ is a cyclic quadrilateral, since are both right angles.
Hence ∠QPB = ∠QPI = ∠QAI
= ∠QAC − ∠IAC = (90− C

2 )− A
2 = B

2 = ∠PBC.
Therefore PQ is parallel to BC.

3. (16 marks) Find all real numbers x, y, z that satisfy the following system of equations:
6x− 5y = xy
6y − 5z = yz
6z − 5x = zx
Solution:
First, we consider the case that any one of x, y, z may be zero; without loss of generality let x = 0.
Substituting this in the first equation, we get y = 0, and in the third equation, we get z = 0.
Hence, if any one of x, y, z is zero, then all of them are forced to be zero, and we get (x, y, z) = (0, 0, 0)
as one solution, which indeed satisfies the above system of equations.

Now, let us consider the case that none of x, y, z is zero. Then we can define a = 1
x , b = 1

y , c = 1
z .

By dividing each of the above equations by their RHS, we can rewrite the same as follows:
6b− 5a = 1
6c− 5b = 1
6a− 5c = 1
This is a linear system of three equations and three unknowns, and can be solved by several well known
methods, such as Cramer’s rule, or repeated elimination. By any method, we get the only solution as
(a, b, c) = (1, 1, 1); which gives us (x, y, z) = (1, 1, 1).

Thus the entire solution set is {(0, 0, 0), (1, 1, 1)}.

4. (16 marks) There is a round table with 18 identical chairs around it. Find the number of ways in which
5 teachers and 13 students can be seated, so that no 4 students are sitting together. (Note that any two
seating arrangements which are identical by rotation, will be considered identical)
Solution:
In any given valid seating configuration, let us denote the teachers as T1, T2, · · · , T5, in the order in
which they appear clockwise, starting from any one teacher.
Let x1 denote the number of students seated directly to the left of T1 (i.e. in between T1 and T2).
Similarly we define x2, x3, · · · , x5. Then, we know that x1 + x2 + x3 + x4 + x5 = 13, with all xi < 4.
There are only three solutions to this integer equation (considering cyclic rotations to be identical):
(3, 3, 3, 3, 1), (3, 3, 3, 2, 2) and (3, 3, 2, 3, 2). Each solution corresponds to a specific configuration of chairs
being reserved for students and teachers.
Also, it is important to note that all the three configurations are rotationally asymmetric; or in other
words, once any configuration (say 3,3,3,3,1) has been chosen, each chair is effectively being given a
distinct ‘label’ based on its position (for instance, ‘three chairs to the right of the 1’).
So for each of those three configurations, there are exactly 5! ways to arrange the teachers, and 13! ways
to arrange the students, among their reserved chair types.
Hence the final answer is 3× 5!× 13!



5. (16 marks) Given a fixed segment BC and a line l parallel to it, find with proof the position of a point
A on line l, for which the measure of ∠BAC is the maximum.
Solution:
We note that the triangle’s area ∆ = 1

2bc sinA is constant, since its base and height are of a constant

length. By cosine rule: cosA = b2+c2−a2

2bc , or equivalently: cotA = cosA
sinA = b2+c2−a2

4∆ ..(1)

Since cot is a decreasing function in the (0, π) range, so to maximize the value of A, we need to minimize
the value of cotA. On the RHS of the above equation (1), since a and ∆ are constant, so we want to
minimize b2 + c2.

If M is the midpoint of side BC, then by Apollonius’ theorem, b2 + c2 = 1
2a

2 + 1
2AM

2.
So we need to find the position of A that minimizes the distance AM .
So the optimal position of A would be at the foot of the perpendicular from M onto the line l, which
would cause ∆ABC to be an isosceles triangle.

6. (20 marks) Find the number of integers m such that exactly one of the roots of the following quadratic
equation is an integer:

2x2 −mx+ 125 = 0

Solution:
Using the standard formula, we get the roots of the equation as α = m+

√
∆

4 ; β = m−
√

∆
4

with the discriminant as ∆ = m2 − 1000, which has to be a perfect square, for any one of the above
roots to be an integer.
Let ∆ = k2, where k is a non-negative integer. Then the above roots are: α = m+k

4 ; β = m−k
4 .

Claim: A necessary and sufficient condition for exactly one of the above roots to be an integer, is that
both m and k are odd.
Proof: The difference between the above two numerators is 2k; so if k were even, then both the numerators
would be congruent modulo 4; and it would be impossible for exactly one of them to be divisible by 4.
Hence k is odd. Now, no matter which of the above two numerators is divisible by 4, it forces m to be
odd as well.
Conversely as well, if m, k are both odd, then it forces m + k and m − k to be congruent to 0 and 2
(modulo 4), in some order; meaning that exactly one of α, β is an integer.

Hence, all we need is to find the number of odd pairs (m, k) which satisfy the discriminant k2 = m2−1000;
which is equivalent to 1000 = (m+ k)(m− k).
Let m = 2m1 + 1; and k = 2k1 + 1, where m1, k1 ∈ Z. Then we get 250 = (m1 + k1 + 1)(m1 − k1).
Using any integer factorization 250 = pq, we get m1 = p+q−1

2 and k1 = p−q−1
2 . Importantly, we note

that p and q would always be of opposite parity, so m1, k1 would always be integers.
Finally, the number of positive divisors of 250 = 2153 is (1 + 1) × (3 + 1) = 8; so the total number
of integer factorizations of the form 250 = pq would be twice as many, considering positive as well as
negative divisor pairs.
However, we note that swapping the value of p and q does not change the value of m1, and hence the value
of m as well. So we also have to divide by 2, to eliminate the double counting of multiple factorizations
which are yielding the same value of m.

So our final answer is that there are 8 possible values of m, that satisfy the original condition of the
problem.


