Problem

Let n € N be an even number, say n = 2m. Also let I, = {1,2,3,--- ,n}.

Let f : I, — I, be a bijection; in other words, it represents a permutation of length n.
If i € I, such that f(i) =4, then i is called a fized point of f.

If i € I, such that f(i) =n + 1 — 4, then i is called a mirror point of f.

Let X, denote the number of permutations of length n with no fixed points and no mirror
points. Find the value of X,,.

Solution

We wish to apply the Principle of Inclusion-Exclusion (PIE).

Let our universal set be S, the set of all permutations of length n; hence |S,,| = n!.

For all i € I, we define A; = {f € S,|f(i) =i}, and B; = {f € S,|f(i)) =n+ 1 —i}.

In other words, A; is the set of all permutations for which i is a fixed point, and B; is the
set of all permutations for which ¢ is a mirror point.

We note the following lemma, which will help us to make suitable cases later on:

Lemma: For any 4,j € [, such that i + j =n+1, |4, N B;| =|A;,NB;| =0.

Proof: It suffices to note that n is even, hence no element can be a fixed point as well as a
mirror point of the same permutation.

(If n is odd, then only the middle element ”T“ can be a fixed point as well as a mirror point.
The reader is encouraged to suitably modify this solution to work for odd values of n as well.)

By PIE, what we want to calculate is:
2n
Xo =18 = |A1UAU---UA, UBUB,U---UB,| =S|+ ) (-1)'E, (1)
t=1

where I, denotes the sum of the sizes of all ¢-set intersections from the A;, B; families.

In other words, E; = > |A;, NA;,N---NA;, NB;, NBj,N---N B, where the summation is
taken over all 1 <i; <ip < - < <mand 1< j; < jp<---<j;<nsuchthat k+1=1t;
including the possibility that either of k,[ could be zero.

To calculate Ej, all such ¢-set intersections [ = [A4;, N A, N---NA;, NB;, "B, N---NB,|
can be partitioned into the following cases:

Case 1: There exist some 1 <r <k and 1 < s <[, such that ¢, = j;, or 2, + js =n+ 1
Due to the above lemma, we note that |A4; N B;,| = 0; hence |I| = 0.

Case 2: There do not exist any 1 <r < kand 1 < s <[, for which ¢, = j, or i, +js = n+1.
For any permutation f that belongs to the t-set intersection I as defined above, the following
values of f are forced:

f(i,) =1, for all r from 1 to k, and f(js) =n+1— j, for all s from 1 to I.

All the above values in the domain and codomain are distinct, which is consistent with f
being a bijection.

All the remaining n—k —[ = n—t values of f can be chosen in (n—1t)! ways; so |I| = (n—1t)!.



Now we only need to count the ¢-set intersections that belong to case 2.

Noting that n = 2m, we partition the 2n sets of A;, B; families into m groups of 4 sets each:
{A1, A, By, By}, {As, A1, By, B 1}, - -

) {Al7 An+17i7 Bi7 Bn+17i}> ] {Amu Aerl; Bm; Bm+1}

As per the constraint imposed by case 2, no two A;, B; from the same group can be used
in any given t-set intersection. So we can use at most 2 out of the 4 elements from each group.

Let us count the sub-case in which we use exactly 2 elements from some r groups, and exactly
1 element from some s groups; where 2r + s = ¢.

We can choose the first r groups in (T) ways, and the next s groups in (ms_r) ways.

For each of the first r groups, we can use either both elements of the A; family, or both
elements of the B; family, in that group.

For each of the next s groups, we can use any one of the 4 elements in that group.

Thus the number of ¢-set intersections in this sub-case is (T) (mS_T) 24° = (m) (;” 2:) 22t=3r,
Summing up the above sub-cases over all valid values of r, and noting that each such ¢-set
intersection is of size (n — t)!, we get:
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We note that if the two binomial coefficients on the RHS are non-zero, then m > r and
m —r >t — 2r; which forces t < 2m = n. In other words, F; = 0 for all ¢ > n; which makes
sense because we cannot force more than n constraints on a function having n inputs.

The above formula also gives Fy = n! which is the size of our universal set 5,,.

We can now combine (1) and (2) to write the formula for X,,, which is the number of n-length
permutations with no fixed points and no mirror points:
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By exchanging the order of summation, and other simplifications, we can rewrite this as:

KXo = f: (Z”) 9m=s 7 ()

s=0

where F)(s) = i(Qs—k) (Z)(-zl)k.

k=0
Similarly, the reader is encouraged to derive the following formula for the case when n is
odd, say n = 2m + 1:

Yo =3 ()22 (5) = o)

where F(s) is the same as above, and Fy(s) = Z(Zs —k+1)! (k) (—4)".
k=0
It seems difficult to simplify these any further; the reader is encouraged to try the same.



Finally, we provide some initial values of X,,, along with the number of derangements D,,,
as well as a sample implementation in Python to count D,,, X,, directly.

n D, X,
1 0 0

2 1 0

3 2 0

4 9 4

5 44 16
6 265 80
7 1854 672
8 14833 4752
9 | 133496 | 48768
10 | 1334961 | 440192

def get_permutations(n, isValid):
# use backtracking to generate all permutations recursively
def perms_step(n, output, available, isValid):
# output: permutation generated so far
# available: elements available to append in this step
# isValid is a function that takes inputs as n, i, p(i),
# and returns whether it is ok to put element p(i) at position i
if len(available) == O0:
return [output]
all_outputs = []
for p_i in available:
if isValid(n, len(output), p_i):
newOutput = output.copy(); newOutput.append(p_i)
newAvailable = available.copy(); newAvailable.remove(p_i)
all_outputs += perms_step(n, newQOutput, newAvailable, isValid)
return all_outputs
return perms_step(n, [], set(range(n)), isValid)

def isNotFixedPt(m, i, p_i):
return p_i !'= i

def isNotMirrorPt(m, i, p_i):
return p_i !'= n -1 - 1

def isNotFixedOrMirrorPt(m, i, p_i):
return isNotFixedPt(n, i, p_i) and isNotMirrorPt(m, i, p_i)

def print_dn_xn_table(N):
for n in range(l, N):
D.n = len(get_permutations(n, isNotFixedPt))
X_n = len(get_permutations(n, isNotFixedOrMirrorPt))
print(f’n:{n: 3} D_n:{D_n: 9} X_n:{X_n: 93}°)

if name == 7 main 7

print_dn_xn_table (11)

mirror _pts.py




