
Problem

Let n ∈ N be an even number, say n = 2m. Also let In = {1, 2, 3, · · · , n}.
Let f : In → In be a bijection; in other words, it represents a permutation of length n.
If i ∈ In such that f(i) = i, then i is called a �xed point of f .
If i ∈ In such that f(i) = n+ 1− i, then i is called a mirror point of f .

Let Xn denote the number of permutations of length n with no �xed points and no mirror
points. Find the value of Xn.

Solution

We wish to apply the Principle of Inclusion-Exclusion (PIE).
Let our universal set be Sn, the set of all permutations of length n; hence |Sn| = n!.
For all i ∈ In, we de�ne Ai = {f ∈ Sn|f(i) = i}, and Bi = {f ∈ Sn|f(i) = n+ 1− i}.
In other words, Ai is the set of all permutations for which i is a �xed point, and Bi is the
set of all permutations for which i is a mirror point.

We note the following lemma, which will help us to make suitable cases later on:
Lemma: For any i, j ∈ In such that i+ j = n+ 1, |Ai ∩Bi| = |Ai ∩Bj| = 0.
Proof : It su�ces to note that n is even, hence no element can be a �xed point as well as a
mirror point of the same permutation.
(If n is odd, then only the middle element n+1

2
can be a �xed point as well as a mirror point.

The reader is encouraged to suitably modify this solution to work for odd values of n as well.)

By PIE, what we want to calculate is:

Xn = |S| − |A1 ∪ A2 ∪ · · · ∪ An ∪B1 ∪B2 ∪ · · · ∪Bn| = |S|+
2n∑
t=1

(−1)tEt (1)

where Et denotes the sum of the sizes of all t-set intersections from the Ai, Bj families.
In other words, Et =

∑
|Ai1 ∩Ai2 ∩ · · · ∩Aik ∩Bj1 ∩Bj2 ∩ · · · ∩Bjl |, where the summation is

taken over all 1 ≤ i1 < i2 < · · · < ik ≤ n and 1 ≤ j1 < j2 < · · · < jl ≤ n such that k + l = t;
including the possibility that either of k, l could be zero.

To calculate Et, all such t-set intersections I = |Ai1 ∩Ai2 ∩ · · · ∩Aik ∩Bj1 ∩Bj2 ∩ · · · ∩Bjl |
can be partitioned into the following cases:

Case 1: There exist some 1 ≤ r ≤ k and 1 ≤ s ≤ l, such that ir = js, or ir + js = n+ 1
Due to the above lemma, we note that |Air ∩Bjs| = 0; hence |I| = 0.

Case 2: There do not exist any 1 ≤ r ≤ k and 1 ≤ s ≤ l, for which ir = js or ir+ js = n+1.
For any permutation f that belongs to the t-set intersection I as de�ned above, the following
values of f are forced:
f(ir) = ir for all r from 1 to k, and f(js) = n+ 1− js for all s from 1 to l.
All the above values in the domain and codomain are distinct, which is consistent with f
being a bijection.
All the remaining n−k− l = n−t values of f can be chosen in (n−t)! ways; so |I| = (n−t)!.
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Now we only need to count the t-set intersections that belong to case 2.
Noting that n = 2m, we partition the 2n sets of Ai, Bj families into m groups of 4 sets each:
{A1, An, B1, Bn}, {A2, An−1, B2, Bn−1}, · · ·
· · · , {Ai, An+1−i, Bi, Bn+1−i}, · · · , {Am, Am+1, Bm, Bm+1}
As per the constraint imposed by case 2, no two Ai, Bj from the same group can be used
in any given t-set intersection. So we can use at most 2 out of the 4 elements from each group.

Let us count the sub-case in which we use exactly 2 elements from some r groups, and exactly
1 element from some s groups; where 2r + s = t.
We can choose the �rst r groups in

(
m
r

)
ways, and the next s groups in

(
m−r
s

)
ways.

For each of the �rst r groups, we can use either both elements of the Ai family, or both
elements of the Bi family, in that group.
For each of the next s groups, we can use any one of the 4 elements in that group.
Thus the number of t-set intersections in this sub-case is

(
m
r

)(
m−r
s

)
2r4s =

(
m
r

)(
m−r
t−2r

)
22t−3r.

Summing up the above sub-cases over all valid values of r, and noting that each such t-set
intersection is of size (n− t)!, we get:

Et = (n− t)!

b t
2
c∑

r=0

(
m

r

)(
m− r

t− 2r

)
22t−3r (2)

We note that if the two binomial coe�cients on the RHS are non-zero, then m ≥ r and
m− r ≥ t− 2r; which forces t ≤ 2m = n. In other words, Et = 0 for all t > n; which makes
sense because we cannot force more than n constraints on a function having n inputs.
The above formula also gives E0 = n! which is the size of our universal set Sn.

We can now combine (1) and (2) to write the formula for Xn, which is the number of n-length
permutations with no �xed points and no mirror points:

Xn =
n∑

t=0

(−1)t(n− t)!

b t
2
c∑

r=0

(
m

r

)(
m− r

t− 2r

)
22t−3r

By exchanging the order of summation, and other simpli�cations, we can rewrite this as:

X2m =
m∑
s=0

(
m

s

)
2m−sF1(s)

where F1(s) =
s∑

k=0

(2s− k)!

(
s

k

)
(−4)k.

Similarly, the reader is encouraged to derive the following formula for the case when n is
odd, say n = 2m+ 1:

X2m+1 =
m∑
s=0

(
m

s

)
2m−s(F2(s)− F1(s))

where F1(s) is the same as above, and F2(s) =
s∑

k=0

(2s− k + 1)!

(
s

k

)
(−4)k.

It seems di�cult to simplify these any further; the reader is encouraged to try the same.
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Finally, we provide some initial values of Xn, along with the number of derangements Dn,
as well as a sample implementation in Python to count Dn, Xn directly.

n Dn Xn

1 0 0
2 1 0
3 2 0
4 9 4
5 44 16
6 265 80
7 1854 672
8 14833 4752
9 133496 48768
10 1334961 440192

def get_permutations(n, isValid):

# use backtracking to generate all permutations recursively

def perms_step(n, output , available , isValid):

# output: permutation generated so far

# available: elements available to append in this step

# isValid is a function that takes inputs as n, i, p(i),

# and returns whether it is ok to put element p(i) at position i

if len(available) == 0:

return [output]

all_outputs = []

for p_i in available:

if isValid(n, len(output), p_i):

newOutput = output.copy(); newOutput.append(p_i)

newAvailable = available.copy(); newAvailable.remove(p_i)

all_outputs += perms_step(n, newOutput , newAvailable , isValid)

return all_outputs

return perms_step(n, [], set(range(n)), isValid)

def isNotFixedPt(n, i, p_i):

return p_i != i

def isNotMirrorPt(n, i, p_i):

return p_i != n - 1 - i

def isNotFixedOrMirrorPt(n, i, p_i):

return isNotFixedPt(n, i, p_i) and isNotMirrorPt(n, i, p_i)

def print_dn_xn_table(N):

for n in range(1, N):

D_n = len(get_permutations(n, isNotFixedPt))

X_n = len(get_permutations(n, isNotFixedOrMirrorPt))

print(f'n:{n: 3} D_n:{D_n: 9} X_n:{X_n: 9}')

if __name__ == '__main__ ':

print_dn_xn_table (11)

mirror_pts.py
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