Problem

Let p be a prime number. Consider the set $\mathbb{P} = \{0, 1, \dots, p^2 + p\}.$ Construct a set $\mathbb{L} = \{L_0, L_1, \cdots, L_{p^2+p}\}\$ where each L_i is a subset of \mathbb{P} , such that:

- 1. For each $L_i \in \mathbb{L}, |L_i| = p + 1;$
- 2. For each $i \in \mathbb{P}$, there are exactly $p + 1$ sets from \mathbb{L} that contain *i*;
- 3. For each distinct $L_i, L_j \in \mathbb{L}, |L_i \cap L_j| = 1;$
- 4. For each distinct $i, j \in \mathbb{P}$, there is exactly one set from L that contains both i and j.

Solution

We introduce the following notation:

For each $q \in \{0, 1, 2, \dots, p-1\}$, let $A_q = \{qp + r | 0 \le r < p\}$; and let $B = \{p^2, p^2 + 1, \dots, p^2 + p\}$. Clearly, $A_0, A_1, \dots, A_{p-1}, B$ form a disjoint partition of \mathbb{P} ; and each A_q is a complete set of residues modulo p. For any $q \in \{0, 1, 2, \dots, p-1\}$ and any $n \in \mathbb{Z}$; let $r_q(n)$ denote the unique element $d \in A_q$ such that $n \equiv d(\mod p)$.

We claim that the following construction satisfies the given requirements:

For each $n \in \mathbb{P}$, either $n \in A_q$ for some $q \in \{0, 1, 2, \dots, p-1\}$, or $n \in B$.

If $n \in A_q$, we define: $L_n = \{r_0(n), r_1(n+q), r_2(n+2q), \cdots, r_k(n+kq), \cdots, r_{p-1}(n+(p-1)q), p^2+q\}$ Else if $n \in B$, then $n = p^2 + r$ for some $r \in \{0, 1, 2, \dots, p\}$. Then we define: $L_n = A_r \cup \{p^2 + p\}$.

For an illustration of this construction, refer to the example diagram below:

